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History and Motivation: 1930s

e The basic electroacoustic model for direct radiator
loudspeakers was developed in the 1930s

e From Olson’s Elements of Acoustical Engineering (1940):

(B1)?

ZMT

ZEM =

where B = flux density in the air gap, in gausses,
! = length of the conductor, in centimeters, and
zur = total mechanical impedance, in mechanical ohms.

BMT = T +,iOJ7’l A =
]wCM

where 7, = mechanical resistance, in mechanical ohms,
m = mass of the air load, cone and coil, in grams, and
Cy = compliance of the suspension system, in centimeters per dyne.
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History and Motivatio 70s to 1990s

e In the 1970s, it was recognized that compliance was not
static but exhibited frequency-dependent viscoelastic
behaviour (Elliott, JAES 26 (1978) 1001).

COMPLIANCE - THE PROBLEM PARAMETER.

Because elastomers are used in the suspension system, the
compliance term: is non-linear with displacement, has
freqguency-dependent dynamic values at very low frequencies,
has a larger static value than dynamic value, suffers from
hysteresis and gives rise to a frequency-dependent loss
component. Some of thesecharacteristics are illustrated in

e In the 1990s, the first empirical creep-compliance models
were explored (Knudsen and Jensen, JAES 41 (1993) 3).
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Present Status of Creep-Compliance Models

e At present, there are a handful of established
creep-compliance models in use:
@ 1993: Knudsen (LOG)
® 2010: Ritter creep (3PC)
® 2011: Thorborg f-dependent damping (FDD, SI-LOG)
® 2016: Novak fractional derivative (FD)

e These models replace 1-parameter static compliance with a
2 or 3-parameter form.
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Electrical and Mechanical Circuits for Transducer

Zg

egT I:I Zmot  F gT

O
Electrical circuit
V — e
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R—Z=(B*Z

up

Ly,

| ] O
| S|

I

O
Mechanical circuit
V — Fy = eq(Bl)/Zg
I— Up
R—2Z = (B0)?/Z
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Complete Electrical Circuit for Transducer

Zg from Thorborg and Futtrup, JAES 59 (2011) 612.
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Traditional Static Compliance (TS)

1
iw CMS

Z ot = 1WMps + Rys +

e Basis of technical datasheets

e Cys is the fixed compliance

e A textbook damped harmonic oscillator
— k =1/Cys the spring constant
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Knudsen LOG Model

1
wCo [1 — B In(iw)]

Z ot = 1WMps + Ryvs + g

Two compliance parameters: (Co, 3)
Knudsen and Jensen, JAES 41 (1993) 3
Simple but very accurate for typical drivers

Resistance and compliance now depend on frequency
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Ritter 3-parameter Creep (3PC)

1

Zmot = Z(UMMS ol RMS T c
. 1w
Z(.UCO 1-— [.)) In :

Wo + 1w

Three compliance parameters: (Co, 3, wo)
Ritter and Agerkvist, JAES 129, paper 8217 (2010)
High-frequency cutoff to LOG model for w > w

Wo = 1/Tmin - 27'[fcrit
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Thorborg-Futtrup SI-LOG and FDD Models

) 1 1+iA
Z ot = IWM R -
ot = 10 Mms + MS+sz0(1—Blnw)

Three compliance parameters: (Co, A, 3)

Thorborg and Futtrup, JAES 59 (2011) 612

More general form of storage versus loss compliance
Used on ScanSpeak datasheets: FDD — 3 =0
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Novak Fractional Derivative (FD) Model

. 1+n(iw)k
Zonx = iMyss + Rys + 10
szo

e Three compliance parameters: (Co, 1, B)
e Novak, JAES 64 (2016) 35
e Clever alternative to LOG-type models

B
(%) est = SBest
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Drivers tested

Name | D (cm) Damping | VC Former Copper
FU 10 medium-low alum cap
L16 15 medium-low alum ring below
_ 8&ap
W18 18 | medium-low alum rings above/
below gap
L19 18 ultra-low glass-fiber rings above/
below gap
W26 26 ultra-low kapton rlngglz}e)low
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5 drivers
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Accurate Added-Mass Determination is Critical




Electrical Measurement System

e Smith & Larson Woofer Tester Pro
e Continuous-sine measurement (approx 400 points)
e Constant voltage (242 mV) method

AL

INTERMATIONAL

20



Measurement and Analysis Workflow
General considerations

Motional Impedance

Electrical Impedance -
Zw)=  Zaw) B
N F iwMys + f(w)

e f(w) is model dependent
e Assume all mass dependence captured by Mys
e Neglect nonlinear effects, so need to use low voltage
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Measurement and Analysis Workflow
Added mass

Motional Impedance
Electrical Impedance -

> 2
ZOw) = Zgw) inieJ)rf(w)

@ Perform 3 measurements:
- Cone unweighted: Z?)
~ Cone with added mass m; attached: Z(M)
~ Cone with added mass m;, attached: Z(?)
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Measurement and Analysis Workflow
Added mass

Motional Impedance
Electrical Impedance -

e s
ZW(w)=  Zg(w) iw(Mys + 111) + f(w)

@ Perform 3 measurements:
- Cone unweighted: Z(?)
~ Cone with added mass m; attached: Z()
~ Cone with added mass m;, attached: Z(?)
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Measurement and Analysis Workflow
Added mass

Motional Impedance
Electrical Impedance -

e s
ZP(w)=  Zg(w) iw(Mys + 12) + f(w)

@ Perform 3 measurements:
- Cone unweighted: Z(?)
~ Cone with added mass m; attached: Z(M)
~ Cone with added mass m;, attached: Z(?)
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Measurement and Analysis Workflow
Extract pure motional impedance

Motional Impedance

Electrical Impedance - -
Zw) = Zelw) —
- E iwMyys + f (w)

® Subtract to remove electrical impedance from data
AZy =7 — 70 and AZ, =79 - 7@

and compute model-free motional impedance

75 - (1—wAZAZ,
mot = AZ, — uAZ,
where = m,/my. AL
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Measurement and Analysis Workflow
Extract pure motional impedance

Motional Impedance

Electrical Impedance - -
Z(w) = Ze(w) E0F
- E 1wMps +f(w)

® Subtract to remove electrical impedance from data:
AZy =70 — 70 and AZ, =70 - z®

and compute model-free motional impedance

75 - (1—wAZAZ,
mot T AZ, — uAZ,
where = m,/my. AL
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*
EXample Zmot curves
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*
Example Z;, ., curves
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Measurement and Analysis Workflow
Determine B{

Motional Impedance
Electrical Impedance - A

B — (BQ)Z
2w} = Ze(w) iwMpys + f(w)

® Compute B( using frequency-average

(BUY? = m, <in;0t(z:;mt — A7) >°"2

AZy

w1
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Measurement and Analysis Workflow
Motional impedance fit

Motional Impedance

Electrical Impedance - 2
Z(w) = Ze(w) 7
- E iwMys + f (w)

O Fit Z.,: using complex least-squares method

_ (B0)?
=

mot

ngot . i(l)MMS + RMS —+ ..
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Measurement and Analysis Workflow
Electrical impedance fit

Motional Impedance
Electrical Impedance A\
Z(w) = Ze@) BY
w) = w ;
: iwMys + f(w)

O Fit Zg using complex least squares method

Z8: Rep+iwlgg+---=Z"(w) -
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Illustration of Fit Regions

Motional fit region

1Z] ()
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Illustration of Fit Regions

Electrical fit region

50

-

1Z] ()

ik 51{ 10k 20k

AL

INTERMATIONAL

%o 20 50 100 200 500 1k
[ (Hz)

33



Ilustration of Fit Regions
Other regions are adjusted to minimize total error here

Final error region
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Fit Example: L16
Impedance

Traditional model
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Fit Example: L16
Impedance

LOG model
30 ; ; : ; ;
p --- Data
2% — Fit /]
S 7
s ) 7
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Fit Example: L16
Phase

Traditional model

80

60

Phase (deg)

/ --- Data ||
— Fit

5k 10k 20k

ALMA

=60 20 50 100 200 500 1k 2k
f (Hz)

37



Fit Example: L16
Phase

LOG model
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Fit Example: L16
Nyquist plot

Traditional model
30
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Fit Example: L16
Nyquist plot

LOG model
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Fit Example: L16
Z comparison

Traditional model
30
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Fit Example: L16
Z comparison

LOG model
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Fit Example: L16
Mass consistency formulae

43

_ (Be)y? AZ,
P iw ZgoZie — AZ1)

*

a  (BO)? AZ4
my == fit (it
1w Zmot(zmot — AZy)
e (BU? AZ;

2 iw Zfrifot(zfrifot_Azz)
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Mass consistency
Traditional model
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Mass consistency

LOG model
1.4 r r r r
o | | /]
o -y

e ray
1,OU JfFNIJ//\[/

11
0.9
— mi/m
0.8 fli/ T
— mi/m
0.7 i
— mbt/my
0G5 20 50 100 200
f (Hz)

45 InTeeTORAL



Fit Example: L16
Fit error

Traditional model
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Fit Example: L16
Fit error

LOG model
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Driver-Model Comparison Matrix

Average fit error in Ohms

TS FDD LOG SI-LOG 3PC FD
FU 0.089 0.025 0.026 0.016 0.026 0.025
L16 0.170 0.074 0.019 0.013 0.018 0.020
W18 0.160 0.047 0.009 0.009 0.010 0.008
L19 0342 0.135 0.079 0.081  0.026 0.196
W26 0216 0.046 0.033 0.031 0.032 0.032
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Conclusions
Comments on model robustness and accuracy

e 2-parameter LOG model gives excellent balance of
simplicity versus accuracy

e SI-LOG and FD models may be slightly more accurate in
some cases

e 3PC model may be the most robust (more testing required)

e All models yield frequency-dependent damping absent
from traditional model

¢ Added mass measurements require care and precision
¢ Electrical measurement system should have high S/N
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Thank-you for attending today’s presentation.

For more information about ALMA and for more education
content, please go to www.almainternational.org
or email info@almainternational.org
or call 602-388-8669

Mission Statement:
ALMA is the source of standards,

— ) networking, and education for technical and
business professionals in the acoustics,

audio, and loudspeaker industry

Association of Loudspeaker Manufacturing & Acoustics International




