

Physical Accuracy and Modeling Robustness of Motional Impedance Models

by

C. Futtrup¹ and J. Candy²

¹SEAS Fabrikker AS, Norway ²Pietra, San Diego, CA, USA

AISE 2017

Las Vegas, NV

3-4 January 2017

History and Motivation: 1930s

- The basic electroacoustic model for *direct radiator loudspeakers* was developed in the 1930s
- From Olson's Elements of Acoustical Engineering (1940):

$$z_{EM} = \frac{(Bl)^2}{z_{MT}}$$

where B = flux density in the air gap, in gausses, l = length of the conductor, in centimeters, and $z_{MT} = \text{total mechanical impedance, in mechanical ohms.}$

$$z_{MT} = r_M + j\omega m + \frac{1}{j\omega C_M}$$

where r_M = mechanical resistance, in mechanical ohms, m = mass of the air load, cone and coil, in grams, and C_M = compliance of the suspension system, in centimeters per dyne.

History and Motivation: 1970s to 1990s

• In the 1970s, it was recognized that compliance was not static but exhibited **frequency-dependent** viscoelastic behaviour (Elliott, JAES 26 (1978) 1001).

COMPLIANCE - THE PROBLEM PARAMETER.

Because elastomers are used in the suspension system, the compliance term: is non-linear with displacement, has frequency-dependent dynamic values at very low frequencies, has a larger static value than dynamic value, suffers from hysteresis and gives rise to a frequency-dependent loss component. Some of these characteristics are illustrated in

• In the 1990s, the first empirical creep-compliance models were explored (Knudsen and Jensen, JAES 41 (1993) 3).

Present Status of Creep-Compliance Models

- At present, there are a handful of established creep-compliance models in use:
 - **1** 1993: Knudsen (**LOG**)
 - **2** 2010: Ritter creep (**3PC**)
 - **3** 2011: Thorborg *f*-dependent damping (**FDD**, **SI-LOG**)
 - 4 2016: Novak fractional derivative (FD)
- These models replace 1-parameter static compliance with a 2 or 3-parameter form.

Electrical and Mechanical Circuits for Transducer

Mechanical circuit

$$V \to F_g = e_g(B\ell)/Z_{\rm E}$$

$$I \rightarrow u_{\rm D}$$

$$R \to \mathbb{Z} = (B\ell)^2/Z$$

Complete Electrical Circuit for Transducer

 $Z_{\rm E}$ from Thorborg and Futtrup, JAES 59 (2011) 612.

$$Z = Z_{\rm E} + \frac{(B\ell)^2}{\mathbb{Z}_{\rm mot}}$$

Traditional Static Compliance (TS)

$$\mathbb{Z}_{\text{mot}} = i\omega M_{\text{MS}} + R_{\text{MS}} + \frac{1}{i\omega C_{\text{MS}}}$$

- Basis of technical datasheets
- *C*_{MS} is the **fixed compliance**
- A textbook damped harmonic oscillator
 - $\longrightarrow k = 1/C_{MS}$ the spring constant

Knudsen LOG Model

$$\mathbb{Z}_{\text{mot}} = i\omega M_{\text{MS}} + R_{\text{MS}} + \frac{1}{i\omega C_0 \left[1 - \beta \ln(i\omega)\right]}$$

- Two compliance parameters: (C_0, β)
- Knudsen and Jensen, JAES 41 (1993) 3
- Simple but very accurate for typical drivers
- Resistance and compliance now depend on frequency

Ritter 3-parameter Creep (3PC)

$$\mathbb{Z}_{\mathrm{mot}} = i\omega M_{\mathrm{MS}} + R_{\mathrm{MS}} + \frac{1}{i\omega C_0 \left[1 - \beta \ln \left(\frac{i\omega}{\omega_0 + i\omega}\right)\right]}$$

- Three compliance parameters: (C_0, β, ω_0)
- Ritter and Agerkvist, JAES 129, paper 8217 (2010)
- High-frequency cutoff to LOG model for $\omega\gg\omega_0$
- $\omega_0 = 1/\tau_{\min} = 2\pi f_{\text{crit}}$

Thorborg-Futtrup SI-LOG and FDD Models

$$\mathbb{Z}_{\text{mot}} = i\omega M_{\text{MS}} + R_{\text{MS}} + \frac{1}{i\omega C_0} \left(\frac{1 + i\Lambda}{1 - \beta \ln \omega} \right)$$

- Three compliance parameters: (C_0, Λ, β)
- Thorborg and Futtrup, JAES 59 (2011) 612
- More general form of storage versus loss compliance
- Used on ScanSpeak datasheets: $FDD \rightarrow \beta = 0$

Novak Fractional Derivative (FD) Model

$$\mathbb{Z}_{\text{mot}} = i\omega M_{\text{MS}} + R_{\text{MS}} + \frac{1 + \eta (i\omega)^{\beta}}{i\omega C_0}$$

- Three compliance parameters: (C_0, η, β)
- Novak, JAES 64 (2016) 35
- Clever alternative to LOG-type models

$$\left(\frac{\partial}{\partial t}\right)^{\beta} e^{st} \doteq s^{\beta} e^{st}$$

Drivers tested

Name	D (cm)	Damping	VC Former	Copper
FU	10	medium-low	alum	cap
L16	15	medium-low	alum	ring below gap
W18	18	medium-low	alum	rings above/ below gap
L19	18	ultra-low	glass-fiber	rings above/ below gap
W26	26	ultra-low	kapton	ring below gap

5 drivers

FU₁₀

L16

L19

W18

W26

Accurate Added-Mass Determination is Critical

Electrical Measurement System

- Smith & Larson Woofer Tester Pro
- Continuous-sine measurement (approx 400 points)
- Constant voltage (242 mV) method

Measurement and Analysis Workflow General considerations

$$Z(\omega) = \overbrace{Z_{ ext{E}}(\omega)}^{ ext{Electrical Impedance}} + \overbrace{\frac{(B\ell)^2}{i\omega M_{ ext{MS}} + f(\omega)}}^{ ext{Motional Impedance}}$$

- $f(\omega)$ is model dependent
- Assume all mass dependence captured by $M_{\rm MS}$
- Neglect nonlinear effects, so need to use low voltage

Measurement and Analysis Workflow Added mass

$$Z^{(0)}(\omega) = \overbrace{Z_{\mathrm{E}}(\omega)}^{\mathrm{Electrical\ Impedance}} + \overbrace{\frac{(B\ell)^2}{i\omega M_{\mathrm{MS}} + f(\omega)}}^{\mathrm{Motional\ Impedance}}$$

1 Perform 3 measurements:

- Cone unweighted: Z⁽⁰⁾
- Cone with added mass m_1 attached: $Z^{(1)}$
- Cone with added mass m_2 attached: $Z^{(2)}$

22

Measurement and Analysis Workflow Added mass

$$Z^{(1)}(\omega) = \overbrace{Z_{\rm E}(\omega)}^{
m Electrical\ Impedance} + \overbrace{\frac{(B\ell)^2}{i\omega(M_{
m MS}+m_1)+f(\omega)}}^{
m Motional\ Impedance}$$

1 Perform 3 measurements:

- Cone unweighted: $Z^{(0)}$
- Cone with added mass m_1 attached: $Z^{(1)}$
- Cone with added mass m_2 attached: $Z^{(2)}$

23

Measurement and Analysis Workflow Added mass

$$Z^{(2)}(\omega) = \overbrace{Z_{\rm E}(\omega)}^{
m Electrical\ Impedance} + \overbrace{\frac{(B\ell)^2}{i\omega(M_{
m MS}+m_2)+f(\omega)}}^{
m Motional\ Impedance}$$

- **1** Perform 3 measurements:
 - Cone unweighted: $Z^{(0)}$
 - Cone with added mass m_1 attached: $Z^{(1)}$
 - Cone with added mass m_2 attached: $Z^{(2)}$

Measurement and Analysis Workflow Extract pure motional impedance

$$Z(\omega) = Z_{\rm E}(\omega) + \frac{Motional \, {
m Impedance}}{i\omega M_{
m MS} + f(\omega)}$$

Subtract to remove electrical impedance from data

$$\Delta Z_1 \doteq Z^{(0)} - Z^{(1)}$$
 and $\Delta Z_2 \doteq Z^{(0)} - Z^{(2)}$

and compute model-free motional impedance

$$Z_{\text{mot}}^* \doteq \frac{(1-\mu)\Delta Z_1 \Delta Z_2}{\Delta Z_2 - \mu \Delta Z_1}$$

where $\mu = m_2/m_1$.

Measurement and Analysis Workflow Extract pure motional impedance

$$Z(\omega) = \overbrace{Z_{\rm E}(\omega)}^{
m Electrical\ Impedance} + \overbrace{\frac{(B\ell)^2}{i\omega M_{
m MS} + f(\omega)}}^{
m Motional\ Impedance}$$

2 Subtract to remove electrical impedance from data:

$$\Delta Z_1 \doteq Z^{(0)} - Z^{(1)}$$
 and $\Delta Z_2 \doteq Z^{(0)} - Z^{(2)}$

and compute model-free motional impedance

$$\mathbf{Z_{mot}^*} \doteq \frac{(1-\mu)\Delta Z_1 \Delta Z_2}{\Delta Z_2 - \mu \Delta Z_1}$$

where $\mu = m_2/m_1$.

Example Z_{mot}^* curves

Example Z_{mot}^* curves

Measurement and Analysis Workflow Determine Bl

$$Z(\omega) = \overbrace{Z_{\rm E}(\omega)}^{
m Electrical\ Impedance} + \overbrace{\frac{(B\ell)^2}{i\omega M_{
m MS} + f(\omega)}}^{
m Motional\ Impedance}$$

3 Compute $B\ell$ using **frequency-average**

$$(B\ell)^2 = m_1 \left\langle \frac{i\omega Z_{\text{mot}}^* (Z_{\text{mot}}^* - \Delta Z_1)}{\Delta Z_1} \right\rangle_{\omega_1}^{\omega_2}$$

Measurement and Analysis Workflow Motional impedance fit

$$Z(\omega) = \overbrace{Z_{\rm E}(\omega)}^{
m Electrical\ Impedance} + \overbrace{\frac{(B\ell)^2}{i\omega M_{
m MS} + f(\omega)}}^{
m Motional\ Impedance}$$

4 Fit \mathbb{Z}_{mot} using complex least-squares method

$$\mathbb{Z}_{\text{mot}}^{\text{fit}}: i\omega M_{\text{MS}} + R_{\text{MS}} + \dots = \frac{(B\ell)^2}{Z_{\text{mot}}^*}$$

Measurement and Analysis Workflow Electrical impedance fit

$$Z(\omega) = \overbrace{Z_{\mathrm{E}}(\omega)}^{\mathrm{Electrical\ Impedance}} + \overbrace{\frac{(B\ell)^2}{i\omega M_{\mathrm{MS}} + f(\omega)}}^{\mathrm{Motional\ Impedance}}$$

■ Fit Z_E using complex least squares method

$$Z_{\rm E}^{\rm fit}: \quad R_{\rm E} + i\omega L_{\rm EB} + \dots = Z^{(0)}(\omega) - \frac{(B\ell)^2}{\mathbb{Z}_{\rm mot}^{\rm FIT}(\omega)}$$

Illustration of Fit Regions

Illustration of Fit Regions

Illustration of Fit Regions Other regions are adjusted to minimize total error here

Fit Example: L16 Impedance

f(Hz)

Fit Example: L16 Impedance

Fit Example: L16 Phase

Fit Example: L16 Phase

Fit Example: L16 Nyquist plot

Fit Example: L16 Nyquist plot

Fit Example: L16 Z comparison

Fit Example: L16 Z comparison

Fit Example: L16 Mass consistency formulae

$$m_1^* = rac{(B\ell)^2}{i\omega} rac{\Delta Z_1}{Z_{ ext{mot}}^* (Z_{ ext{mot}}^* - \Delta Z_1)}$$
 $m_1^{ ext{fit}} = rac{(B\ell)^2}{i\omega} rac{\Delta Z_1}{Z_{ ext{mot}}^{ ext{fit}} (Z_{ ext{mot}}^{ ext{fit}} - \Delta Z_1)}$
 $m_2^{ ext{fit}} = rac{(B\ell)^2}{i\omega} rac{\Delta Z_2}{Z_{ ext{mot}}^{ ext{fit}} (Z_{ ext{mot}}^{ ext{fit}} - \Delta Z_2)}$

Fit Example: L16 Mass consistency

Fit Example: L16 Mass consistency

Fit Example: L16 Fit error

Fit Example: L16 Fit error

Driver-Model Comparison Matrix

Average fit error in Ohms

	TS	FDD	LOG	SI-LOG	3PC	FD
FU	0.089	0.025	0.026	0.016	0.026	0.025
L16	0.170	0.074	0.019	0.013	0.018	0.020
W18	0.160	0.047	0.009	0.009	0.010	0.008
L19	0.342	0.135	0.079	0.081	0.026	0.196
W26	0.216	0.046	0.033	0.031	0.032	0.032

Conclusions Comments on model robustness and accuracy

- 2-parameter LOG model gives excellent balance of simplicity versus accuracy
- SI-LOG and FD models may be slightly more accurate in some cases
- 3PC model may be the **most robust** (more testing required)
- All models yield frequency-dependent damping absent from traditional model
- Added mass measurements require care and precision
- Electrical measurement system should have high S/N

Thank-you for attending today's presentation.

For more information about ALMA and for more education content, please go to www.almainternational.org or email info@almainternational.org or call 602-388-8669

Mission Statement:

ALMA is the source of standards, networking, and education for technical and business professionals in the acoustics, audio, and loudspeaker industry

Association of Loudspeaker Manufacturing & Acoustics International